A controlled environment chamber system for high frequency of leaf level CH₄ exchange measurements: setup, operating principles, and initial results Markku Koskinen^{1,2,3}, Lukas Kohl^{1,2}, Paivi Mäkiranta4, Tatu Polvinen^{1,2}, Marjo Patama^{1,2,5}, Salla Tenhovirta^{1,2,5}, Mari Pihlatie ^{1,2,5} Plant shoots can emit methane (CH₄) from multiple source processes (microbial methanogenesis in soils and core wood, aerobic CH₄ production in foliage). We constructed a chamber system to isolate these processes and study how leaf level CH₄ emissions respond to environmental factors like dark-light-cycles, temperature, drought, or CO₂ concentrations. Tree samplings are located in a FITOCLIMA D 1200 plant growth chamber to for PAR, temperature and humidity control and equipped with a measurement chamber to quantify CH₄ exchange in a closed loop setup with a Picarro G2301 CH₄ analyser. The system was further customized to control temperature, CO2, and humidity control in the measurement chamber. The system allows the detection of CH₄ flux rates of on the order of 1 nmol CH₄ h⁻¹ and can conduct high frequency (< 15 min) measurements of CH₄ emissions rates from small shoots (<5g foliage biomass). Initial measurements were conducted with Scots pine and birch saplings. These experiments demonstrated that the shoots of different tree species emit CH₄ from distinct sources. Shoots of Scots pine and some birch species emited CH₄ produced within the shoot, likely through aerobic CH₄ production, which showed a strong diurnal cycles that follows irradiation and photosynthesis rates. Shoot from some birch species, in contrast, showed emissions of soilborne CH₄ that remained constant throughout day and nighttime. We expect that future experiment with this unique setup will allow to further disentangle shoot CH₄ emissions and characterize their response to environmental conditions including light, temperature, and relative humidity. 247 words. ¹Environmental Soil Science, Department of Agricultural Sciences, University of Helsinki, Finland ²Institute for Atmospheric and Earth System Research / Forest Sciences, Finland ³Finnish Meteorological Institute, Helsinki, Finland ⁴Finnish Institute of Natural Resources (Luke), Helsinki, Finland ⁵Viikki Plant Science Centre, University of Helsinki, Finland